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We provide a mathematical model for optimal routing in a volunteer com-
puting. The model expresses the process of computing in a Desktop Grid
in terms of Jackson network. An optimization problem for finding the max-
imum workunits generation rate with constraints on the node utilization is
considered. A numerical experiment is stated, based on data from a BOINC
project, an optimal solution is obtained. Applicability of results is discussed.

Introduction

The problem of optimal routing in volunteer computing is evidently one of the main
problems the researcher has to solve while planning a new project or running the existing
one. A typical application in a Desktop Grid environment is split into workunits, each
of them provides (one or more) results sent to hosts (nodes of the GRID) by a server.
In case of an error in getting the result back from host (due to deadline violation or
computation error) the server has to resend the result to (same or another) host, until
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the maximum number of attempts/errors is reached. The hosts are configured in such
a way to prevent decrease in users quality of experience. More exactly, the volunteer
computing project can not take more computational power fraction than the constraint
(which may be modified by user of the host). However, as the server does not have
information about the busy/idle periods of hosts, it may generate tasks too intensively,
that leads to increase in erroneous results, which in term increases the server load (due
to need in re-sending the results). This may provide overall decrease of performance of
the GRID, which may be expressed in terms of the total error rate. One of the solutions
of the problem is to provide an optimal rate together with an optimal routing scheme.
The rest of the paper is organized as follows. In section 1 the model is presented. In

section 2 the optimization problem is exposed. In section 3 the numerical experiment is
discussed. As the numerical experiment is done over the BOINC system, in the rest of
the paper we consider this type of volunteer computing environment.

1 Jackson network model

We have a system with a BOINC server and N hosts. The whole system must process a
large task splitted in (infinitely) many workunits. The server feed the hosts with results,
each of them correspond to a single workunit. The hosts process the results, and send
them to the BOINC server. Occasionally the results are erroneous.
We model a system as a Jackson-Network [1] with J = N + 1 nodes, Poisson input

rate λ, routing matrix r and service rates µ = (µ1, ..., µN+1). The service times are
considered to be exponentially distributed, they are independent from each other and
from the Poisson input stream.
The customers of the queueing system are workunits, when they enter the server N+1,

and they are results, when they leave the hosts 1,..,N+1. The workunits leave the virtual
node 0 and enter the system in the node N + 1 with a rate λ (this is the intensity of
generation of new workunits). The node N + 1 models a part of the scheduler of the
BOINC server and network infrostructure from server to the clients. We assume that
the customers are processed in FCFS-order. The service rate µN+1 models the inverse
of time required for scheduling, routing and sending a result to host. The server sends
each result to host j with probability pj . These decisions are i.i.d. We define probability
vector p = (p1, . . . , pN ) ∈ [0, 1]N with

∑N
j=1 pj = 1.

The client service rates µi j ∈ {1, . . . , N} desribe the average rate required for a client
j to process a result, either erroneously or successfuly. Each service rate µj already
includes daily, weakly and similar fluctuation of availability of the host j during the
processing of the large task.
Sometimes a host j fails to process a workunit correctly or on time. We assume that

the probability of the workunit to be faulty processed at the host j is i.i.d with probability
sj . In this case the results will be returned to the server N + 1 for next processing. We
define failure probabilities vector s = (s1, . . . , sN ) ∈ [0, 1)N . The successfully processed
workunits are sent to the virtual node 0 and leave the system.
The routing matrix r of the system is
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r =



0 1 2 . . . N − 1 N N + 1

0 0 0 0 . . . 0 0 1
1 1− s1 s1
2 1− s2 s2
...

...
N − 1 1− sN−1 sN−1
N 1− sN sN

N + 1 0 p1 p2 . . . pN−1 pN


See Figure 1 for system discription.
The server N +1 and the clients j ∈ {1, . . . , N} are modeled as queueing systems with

infinite number of waiting places, which is required by the Jackson-network model. We
bound the individual arrival rates ηj in consideration of the service rates µj . We define
a vector b = (b1, . . . , bN+1) ∈ (0, 1)N+1 and require

ηj ≤ bjµj ∀j ∈ {1, . . . , N + 1}. (1)

Note that this consideration is natural to the BOINC system, as the hosts may define
the maximum fraction of time that the host may be used for computation of the project.
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Figure 1: The Jackson-network model of the BOINC system

Mathematically, we describe the model as stochastic process X = (Xj(t) : j ∈
{1, . . . , N}, t ∈ R+

0 ) where Xj(t) describes number of customers on the node j at time t.

Proposition 1.1. The solution of the traffic equation

ηj = λr(0, j) +
∑
i∈J

ηir(i, j), ∀j ∈ J

is

ηj = ηN+1pj , ∀j ∈ {1, . . . , N}

ηN+1 =
λ

1−
∑N

j=1 pjsj
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Proof. For our particular system, the grid network, the traffic equation (??) is

ηj = ηN+1pj , ∀j ∈ {1, . . . , N} (2)

ηN+1 = λ+
N∑
j=1

ηjsj .

Therefore it holds

ηN+1 = λ+
N∑
j=1

ηN+1pjsj

= λ+ ηN+1

N∑
j=1

pjsj

=⇒ ηN+1 =
λ

1−
∑N

j=1 pjsj

2 Optimization with constant service rates µj

Problem 2.1. We have to find an optimal input rate λ and distribution vector p ∈ [0, 1]N

such that constraints for host utilization hold. The optimization problem is therefore to
minimize

f : D −→ R+

(λ, p) : 7→ f(λ, p) := −λ

on D := (R+)
N+1, under inequality constraints

ηj ≤ bjµj ∀j ∈ {1, . . . , N + 1}

and under equality constraints

h(λ, p) :=
N∑
j=1

pj − 1 = 0

Proposition 2.2. The equality constraints can be written as

gj(λ, p) ≤ 0

with

gj(λ, p) = λpj + bjµj

N∑
j=1

pjsj − bjµj ∀j ∈ {1, . . . , N + 1}

gN+1(λ, p) = λ+ bN+1µN+1

N∑
j=1

pjsj − bN+1µN+1
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Proof.

ηN+1pj ≤ bjµj

⇐⇒ λ

1−
∑N

j=1 pjsj
pj ≤ bjµj

⇐⇒ λpj ≤ bjµj(1−
N∑
j=1

pjsj)

⇐⇒ λpj + bjµj

N∑
j=1

pjsj − bjµj︸ ︷︷ ︸
:=gj(λ,p)

≤ 0 ∀j ∈ {1, . . . , N + 1}

and

ηN+1 ≤ bN+1µN+1

⇐⇒ λ

1−
∑N

j=1 pjsj
≤ bN+1µN+1

⇐⇒ λ ≤ bN+1µN+1(1−
N∑
j=1

pjsj)

⇐⇒ λ+ bN+1µN+1

N∑
j=1

pjsj − bN+1µN+1︸ ︷︷ ︸
=:gN+1(λ,p)

≤ 0

Corollary 2.3. Gradient functions

gradf(λ, p) = (−1, 0, ..., 0)

gradgj(λ, p) = (pj , bjµjs1, . . . , bjµjsj−1, λ+ bjµjsj , bjµjsj+1, . . . , bjµjsN )

gradgN+1(λ, p) = (1, bN+1µN+1s1, . . . , bN+1µN+1sj−1, bN+1µN+1sj ,

bN+1µN+1sj+1, . . . , bN+1µN+1sN ), j ∈ {1, . . . , N}

gradh(λ, p) = (0, 1, . . . , 1)
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3 Numerical results

3.1 BOINC database information extraction

The main information on the hosts parameters is spread over three tables, namely host,
workunit, result.
The service intensity µj for each host may be counted from the sum of result.elapsed_time

divided by the number of records for the particular host. The probability of a host error
sj may be counted as the number of erroneous results for the selected host, divided by
the total number of results dedicated to that host by server. The probability of routing
is counted from the total number of results sent to the host by server, divided by overall
number of results. The value bj is the characteristic of a particular host and may be
taken as the value host.active_frac.
The dataset was taken from a real BOINC project which used no replication technology

(workunit.target_nresults=1), and the deadline was equal to 3 days. In order to clean
the data, the table workunit was cleared from records with id<30000 (the setup period
of the project). The table result was cleared from records having no workunits. The
table host was creared from records on hosts which didn’t provide any results. The
total number of workunits involved in experiment were 927346. 75869 of them were
erroneous, which is relatively high (the total number of attemts that could be made for
each workunit for that particular project was 6). The SQL statements for data import
using R code is as shown below:

dbConnect(MySQL(), dbname="test")
host=dbGetQuery(con, "select id as host,active_frac as active
from host where id in (select hostid from result);")
mean_service=dbGetQuery(con, "select sum(elapsed_time)/count(id) as ES,
hostid as host from result where outcome=1 group by hostid;")
prob_success=dbGetQuery(con, "select hostid as host,count(id) as prob
from result where outcome=1 group by hostid;")
prob_error=dbGetQuery(con, "select hostid as host,count(id) as error
from result where outcome!=1 group by hostid;")
df=merge(prob_success,prob_error,all=TRUE)
df$p=(df$prob+df$error)/sum(df$prob+df$error)
df$s=df$error/(df$prob+df$error)
host=merge(host,mean_service)
dbDisconnect(con)

As a result, the dataframe host contained all the necessary information to define the
model. The optimization problem was solved with the help of NLopt package [2]. The
optimal workunit generation rate was equal to 0.67, which is much lower than the value
used in the project.
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3.2 Discussion

The problem don’t have a unique solution. After optimal input rate λ is obtained, we
can optimize the total network utilization with this fixed λ value.
Note that the total “primary” error rate for the routing plan (produced by nodes

without considering re-routed traffic) in case of a saturated system (when all nodes are
working at their highest available level) will be equal to

N∑
j=1

pjsjµjbj , (3)

which by the solution of the optimization problem would be equal to 0.006878745. This
would lead to approximately 6300 “primarily” erroneous workunits, which is much less
than the number of errors obtained in the project. This outlines the practical importance
of the model.
One of the features of the model is that the server applies routing directly, not waiting

for the clients to ask for work. This assumption may be violated in a Desktop Grid
utilizing PULL technology (as BOINC does), but may be true for an Enterprize Desktop
Grid. In the latter case a PUSH technology seems to be the most promissing to guarantee
robust computation time for each workunit.
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